A note on computing the inverse of a triangular Toeplitz matrix

نویسندگان

  • Skander Belhaj
  • Marwa Dridi
چکیده

Using trigonometric polynomial interpolation, a fast and effective numerical algorithm for computing the inverse of a triangular Toeplitz matrix with real numbers has been recently proposed [Lin et al., Theor Comp Sci 315: 511–523, 2004]. The complexity of the algorithm is two fast Fourier transforms (FFTs) and one fast cosine transform (DCT) of 2n-vectors. In this paper, we present an algorithm with two fast Fourier transforms (FFTs) of 2n-vectors for calculating the inverse of a triangular Toeplitz matrix with real and/or complex numbers. A theoretical accuracy and error analysis is also considered. Numerical examples are given to illustrate the effectiveness of our method. c © 2013 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on inversion of Toeplitz matrices

It is shown that the invertibility of a Toeplitz matrix can be determined through the solvability of two standard equations. The inverse matrix can be denoted as a sum of products of circulant matrices and upper triangular Toeplitz matrices. The stability of the inversion formula for a Toeplitz matrix is also considered. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

An explicit formula for the inverse of band triangular Toeplitz matrix

In order to estimate the condition number of the preconditioned matrix proposed in [F.R. Lin, W.K. Ching, Inverse Toeplitz preconditioners for Hermitian Toeplitz systems, Numer. Linear Algebra Appl. 12 (2005) 221–229], we study the inverse of band triangular Toeplitz matrix. We derive an explicit formula for the entries of the inverse of band lower triangular Toeplitz matrix by means of divided...

متن کامل

On group inverse of singular Toeplitz matrices

In this paper we show that the group inverse of a real singular Toeplitz matrix can be represented as the sum of products of lower and upper triangular Toeplitz matrices. Such a matrix representation generalizes “Gohberg–Semencul formula” in the literature. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A09; 65F20

متن کامل

Bounds for Inverses of Triangular Toeplitz Matrices

This short note provides an improvement on a recent result of Vecchio on a norm bound for the inverse of a lower triangular Toeplitz matrix with nonnegative entries. A sharper asymptotic bound is obtained as well as a version for matrices of finite order. The results are shown to be nearly best possible under the given constraints. 1. Introduction. This paper provides an improvement on a recent...

متن کامل

A Schur–based algorithm for computing the smallest eigenvalue of a symmetric positive definite Toeplitz matrix

Recent progress in signal processing and estimation has generated considerable interest in the problem of computing the smallest eigenvalue of symmetric positive definite Toeplitz matrices. Several algorithms have been proposed in the literature. Many of them compute the smallest eigenvalue in an iterative fashion, relying on the Levinson–Durbin solution of sequences of Yule–Walker systems. Exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2014